Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Microb Cell Fact ; 23(1): 43, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331812

RESUMO

BACKGROUND: Specific productivity (qP) in yeast correlates with growth, typically peaking at intermediate or maximum specific growth rates (µ). Understanding the factors limiting productivity at extremely low µ might reveal decoupling strategies, but knowledge of production dynamics and physiology in such conditions is scarce. Retentostats, a type of continuous cultivation, enable the well-controlled transition to near-zero µ through the combined retention of biomass and limited substrate supply. Recombinant Komagataella phaffii (syn Pichia pastoris) secreting a bivalent single domain antibody (VHH) was cultivated in aerobic, glucose-limited retentostats to investigate recombinant protein production dynamics and broaden our understanding of relevant physiological adaptations at near-zero growth conditions. RESULTS: By the end of the retentostat cultivation, doubling times of approx. two months were reached, corresponding to µ = 0.00047 h-1. Despite these extremely slow growth rates, the proportion of viable cells remained high, and de novo synthesis and secretion of the VHH were observed. The average qP at the end of the retentostat was estimated at 0.019 mg g-1 h-1. Transcriptomics indicated that genes involved in protein biosynthesis were only moderately downregulated towards zero growth, while secretory pathway genes were mostly regulated in a manner seemingly detrimental to protein secretion. Adaptation to near-zero growth conditions of recombinant K. phaffii resulted in significant changes in the total protein, RNA, DNA and lipid content, and lipidomics revealed a complex adaptation pattern regarding the lipid class composition. The higher abundance of storage lipids as well as storage carbohydrates indicates that the cells are preparing for long-term survival. CONCLUSIONS: In conclusion, retentostat cultivation proved to be a valuable tool to identify potential engineering targets to decouple growth and protein production and gain important insights into the physiological adaptation of K. phaffii to near-zero growth conditions.


Assuntos
Saccharomycetales , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomyces cerevisiae/metabolismo , Perfilação da Expressão Gênica , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Lipídeos
2.
J Biol Chem ; 300(3): 105746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354787

RESUMO

In the methylotrophic yeast Komagataella phaffii, we identified an endoplasmic reticulum-resident protein disulfide isomerase (PDI) family member, Erp41, with a peculiar combination of active site motifs. Like fungal ERp38, it has two thioredoxin-like domains which contain active site motifs (a and a'), followed by an alpha-helical ERp29c C-terminal domain (c domain). However, while the a domain has a typical PDI-like active site motif (CGHC), the a' domain instead has CGYC, a glutaredoxin-like motif which confers to the protein an exceptional affinity for GSH/GSSG. This combination of active site motifs has so far been unreported in PDI-family members. Homology searches revealed ERp41 is present in the genome of some plants, fungal parasites, and a few nonconventional yeasts, among which are Komagataella spp. and Yarrowia lipolytica. These yeasts are both used for the production of secreted recombinant proteins. Here, we analyzed the activity of K. phaffii Erp41. We report that it is nonessential in K. phaffii, and that it can catalyze disulfide bond formation in partnership with the sulfhydryl oxidase Ero1 in vitro with higher turnover rates than the canonical PDI from K. phaffii, Pdi1, but slower activation times. We show how Erp41 has unusually fast glutathione-coupled oxidation activity and relate it to its unusual combination of active sites in its thioredoxin-like domains. We further describe how this determines its unusually efficient catalysis of dithiol oxidation in peptide and protein substrates.


Assuntos
Isomerases de Dissulfetos de Proteínas , Dobramento de Proteína , Saccharomycetales , Dissulfetos/química , Glutationa/metabolismo , Oxirredução , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Estrutura Terciária de Proteína , Saccharomycetales/enzimologia , Tiorredoxinas/metabolismo
3.
Microb Biotechnol ; 17(1): e14386, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206275

RESUMO

Retentostat cultivations have enabled investigations into substrate-limited near-zero growth for a number of microbes. Quantitative physiology at these near-zero growth conditions has been widely discussed, yet characterisation of the fluxome is relatively under-reported. We investigated the rewiring of metabolism in the transition of a recombinant protein-producing strain of Komagataella phaffii to glucose-limited near-zero growth rates. We used cultivation data from a 200-fold range of growth rates and comprehensive biomass composition data to integrate growth rate dependent biomass equations, generated using a number of different approaches, into a K. phaffii genome-scale metabolic model. Here, we show that a non-growth-associated maintenance value of 0.65 mmol ATP g CDW - 1 h - 1 and a growth-associated maintenance value of 108 mmol ATP g CDW - 1 lead to accurate growth rate predictions. In line with its role as energy source, metabolism is rewired to increase the yield of ATP per glucose. This includes a reduction of flux through the pentose phosphate pathway, and a greater utilisation of glycolysis and the TCA cycle. Interestingly, we observed activity of an external, non-proton translocating NADH dehydrogenase in addition to the malate-aspartate shuttle. Regardless of the method used for the generation of biomass equations, a similar, yet different, growth rate dependent rewiring was predicted. As expected, these differences between the different methods were clearer at higher growth rates, where the biomass equation provides a much greater constraint than at slower growth rates. When placed on an increasingly limited glucose diet, the metabolism of K. phaffii adapts, enabling it to continue to drive critical processes sustaining its high viability at near-zero growth rates.


Assuntos
Saccharomycetales , Metabolismo Energético , Glicólise , Glucose/metabolismo
4.
Nucleic Acids Res ; 51(20): 11358-11374, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37791854

RESUMO

The promoter of the high-affinity glucose transporter Gth1 (PGTH1) is tightly repressed on glucose and glycerol surplus, and strongly induced in glucose-limitation, thus enabling regulated methanol-free production processes in the yeast production host Komagataella phaffii. To further improve this promoter, an intertwined approach of nucleotide diversification through random and rational engineering was pursued. Random mutagenesis and fluorescence activated cell sorting of PGTH1 yielded five variants with enhanced induction strength. Reverse engineering of individual point mutations found in the improved variants identified two single point mutations with synergistic action. Sequential deletions revealed the key promoter segments for induction and repression properties, respectively. Combination of the single point mutations and the amplification of key promoter segments led to a library of novel promoter variants with up to 3-fold higher activity. Unexpectedly, the effect of gaining or losing a certain transcription factor binding site (TFBS) was highly dependent on its context within the promoter. Finally, the applicability of the novel promoter variants for biotechnological production was proven for the secretion of different recombinant model proteins in fed batch cultivation, where they clearly outperformed their ancestors. In addition to advancing the toolbox for recombinant protein production and metabolic engineering of K. phaffii, we discovered single nucleotide positions and correspondingly affected TFBS that distinguish between glycerol- and glucose-mediated repression of the native promoter.


Assuntos
Glucose , Regiões Promotoras Genéticas , Saccharomycetales , Glucose/metabolismo , Glicerol/metabolismo , Nucleotídeos/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
5.
Biotechnol J ; 18(12): e2300033, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37668396

RESUMO

Amino acids are the building blocks of proteins. In this respect, a reciprocal effect of recombinant protein production on amino acid biosynthesis as well as the impact of the availability of free amino acids on protein production can be anticipated. In this study, the impact of engineering the amino acid metabolism on the production of recombinant proteins was investigated in the yeast Pichia pastoris (syn Komagataella phaffii). Based on comprehensive systems-level analyses of the metabolomes and transcriptomes of different P. pastoris strains secreting antibody fragments, cell engineering targets were selected. Our working hypothesis that increasing intracellular amino acid levels could help unburden cellular metabolism and improve recombinant protein production was examined by constitutive overexpression of genes related to amino acid metabolism. In addition to 12 genes involved in specific amino acid biosynthetic pathways, the transcription factor GCN4 responsible for regulation of amino acid biosynthetic genes was overexpressed. The production of the used model protein, a secreted carboxylesterase (CES) from Sphingopyxis macrogoltabida, was increased by overexpression of pathway genes for alanine and for aromatic amino acids, and most pronounced, when overexpressing the regulator GCN4. The analysis of intracellular amino acid levels of selected clones indicated a direct linkage of improved recombinant protein production to the increased availability of intracellular amino acids. Finally, fed batch cultures showed that overexpression of GCN4 increased CES titers 2.6-fold, while the positive effect of other amino acid synthesis genes could not be transferred from screening to bioreactor cultures.


Assuntos
Reatores Biológicos , Pichia , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Aminoácidos/metabolismo
6.
Sci Rep ; 13(1): 14298, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652992

RESUMO

Oxidative protein folding in the endoplasmic reticulum (ER) is driven mainly by protein disulfide isomerase PDI and oxidoreductin Ero1. Their activity is tightly regulated and interconnected with the unfolded protein response (UPR). The mechanisms of disulfide bond formation have mainly been studied in human or in the yeast Saccharomyces cerevisiae. Here we analyze the kinetics of disulfide bond formation in the non-conventional yeast Komagataella phaffii, a common host for the production of recombinant secretory proteins. Surprisingly, we found significant differences with both the human and S. cerevisiae systems. Specifically, we report an inactive disulfide linked complex formed by K. phaffii Ero1 and Pdi1, similarly to the human orthologs, but not described in yeast before. Furthermore, we show how the interaction between K. phaffii Pdi1 and Ero1 is unaffected by the introduction of unfolded substrate into the system. This is drastically opposed to the previously observed behavior of the human pathway, suggesting a different regulation of the UPR and/or possibly different interaction mechanics between K. phaffii Pdi1 and Ero1.


Assuntos
Saccharomyces cerevisiae , Fermento Seco , Humanos , Dissulfetos , Estresse Oxidativo
7.
N Biotechnol ; 73: 19-28, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36603701

RESUMO

Yeasts, such as Pichia pastoris (syn Komagataella spp.), are particularly suitable expression systems for emerging classes of recombinant proteins. Among them, recombinant antibody fragments, such as single-chain variable fragments (scFv) and single-domain antibodies (VHH), are credible alternatives to monoclonal antibodies. The availability of powerful genetic engineering and synthetic biology tools has facilitated improvement of this cell factory to overcome certain limitations. However, cell engineering to improve secretion often remains a trial-and-error approach and improvements are often specific to the protein produced. Where multiple genetic interventions are needed to remove bottlenecks in the process of recombinant protein secretion, this leads to a high number of combinatorial possibilities for creation of new production strains. Therefore, our aim was to exploit whole transcriptional programs (stress response pathways) in order to simplify the strain engineering of new production strains. Indeed, the artificial activation of the general stress response transcription factor Msn4, as well as synthetic versions thereof, could replace the secretion enhancing effect of several cytosolic chaperones. Greater than 4-fold improvements in recombinant protein secretion were achieved by overexpression of MSN4 or synMSN4, either alone or in combination with Hac1 or ER chaperones. With this concept we were able to successfully engineer strains reaching titers of more than 2.5 g/L scFv and 8 g/L VHH in bioreactor cultivations. This increased secretion capacity of different industrially relevant model proteins indicates that MSN4 overexpression most likely represents a general concept to improve recombinant protein production in yeast.


Assuntos
Reatores Biológicos , Pichia , Engenharia Genética , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes , Estresse Fisiológico
8.
Metab Eng ; 74: 36-48, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36057427

RESUMO

Yeasts and especially Pichia pastoris (syn Komagataella spp.) are popular microbial expression systems for the production of recombinant proteins. One of the key advantages of yeast host systems is their ability to secrete the recombinant protein into the culture media. However, secretion of some recombinant proteins is less efficient. These proteins include antibody fragments such as Fabs or scFvs. We have recently identified translocation of nascent Fab fragments from the cytosol into the endoplasmic reticulum (ER) as one major bottleneck. Conceptually, this bottleneck requires engineering to increase the flux of recombinant proteins at the translocation step by pushing on the cytosolic side and pulling on the ER side. This engineering strategy is well-known in the field of metabolic engineering. To apply the push-and-pull strategy to recombinant protein secretion, we chose to modulate the cytosolic and ER Hsp70 cycles, which have a key impact on the translocation process. After identifying the relevant candidate factors of the Hsp70 cycles, we combined the push-and-pull factors in a single strain and achieved synergistic effects for antibody fragment secretion. With this concept we were able to successfully engineer strains and improve protein secretion up to 5-fold for different model protein classes. Overall, titers of more than 1.3 g/L Fab and scFv were reached in bioreactor cultivations.


Assuntos
Pichia , Via Secretória , Pichia/genética , Pichia/metabolismo , Via Secretória/genética , Proteínas Recombinantes , Transporte Proteico/genética , Engenharia Metabólica
9.
Metab Eng ; 70: 181-195, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35091068

RESUMO

Yeasts are widely used cell factories for commercial heterologous protein production, however, specific productivities are usually tightly coupled to biomass formation. This greatly impacts production processes, which are commonly not run at the maximum growth rate, thereby resulting in suboptimal productivities. To tackle this issue, we evaluated transcriptomics datasets of the yeast Pichia pastoris (syn. Komagataella phaffii), which is known for its high secretory efficiency and biomass yield. These showed a clear downregulation of genes related to protein translation with decreasing growth rates, thus revealing the yeast translation machinery as cellular engineering target. By overexpressing selected differentially expressed translation factors, translation initiation was identified to be the main rate-limiting step. Specifically, overexpression of factors associated with the closed-loop conformation, a structure that increases stability and rates of translation initiation before start codon scanning is initiated, showed the strongest effects. Overexpression of closed-loop factors alone or in combination increased titers of different heterologous proteins by up to 3-fold in fed-batch processes. Furthermore, translation activity, correlating to the obtained secreted recombinant protein yields, selected transcript levels and total protein content were higher in the engineered cells. Hence, translation factor overexpression, globally affects the cell. Together with the observed impact on the transcriptome and total protein content, our results indicate that the capacity of P. pastoris for protein production is not at its limit yet.


Assuntos
Pichia , Biomassa , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomycetales
10.
FEMS Yeast Res ; 21(8)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34849756

RESUMO

The important industrial protein production host Komagataella phaffii (syn Pichia pastoris) is classified as a non-conventional yeast. But what exactly makes K. phaffii non-conventional? In this review, we set out to address the main differences to the 'conventional' yeast Saccharomyces cerevisiae, but also pinpoint differences to other non-conventional yeasts used in biotechnology. Apart from its methylotrophic lifestyle, K. phaffii is a Crabtree-negative yeast species. But even within the methylotrophs, K. phaffii possesses distinct regulatory features such as glycerol-repression of the methanol-utilization pathway or the lack of nitrate assimilation. Rewiring of the transcriptional networks regulating carbon (and nitrogen) source utilization clearly contributes to our understanding of genetic events occurring during evolution of yeast species. The mechanisms of mating-type switching and the triggers of morphogenic phenotypes represent further examples for how K. phaffii is distinguished from the model yeast S. cerevisiae. With respect to heterologous protein production, K. phaffii features high secretory capacity but secretes only low amounts of endogenous proteins. Different to S. cerevisiae, the Golgi apparatus of K. phaffii is stacked like in mammals. While it is tempting to speculate that Golgi architecture is correlated to the high secretion levels or the different N-glycan structures observed in K. phaffii, there is recent evidence against this. We conclude that K. phaffii is a yeast with unique features that has a lot of potential to explore both fundamental research questions and industrial applications.


Assuntos
Metanol , Saccharomyces cerevisiae , Biotecnologia , Pichia/genética , Saccharomycetales
11.
Essays Biochem ; 65(2): 293-307, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-33956085

RESUMO

Besides bakers' yeast, the methylotrophic yeast Komagataella phaffii (also known as Pichia pastoris) has been developed into the most popular yeast cell factory for the production of heterologous proteins. Strong promoters, stable genetic constructs and a growing collection of freely available strains, tools and protocols have boosted this development equally as thorough genetic and cell biological characterization. This review provides an overview of state-of-the-art tools and techniques for working with P. pastoris, as well as guidelines for the production of recombinant proteins with a focus on small-scale production for biochemical studies and protein characterization. The growing applications of P. pastoris for in vivo biotransformation and metabolic pathway engineering for the production of bulk and specialty chemicals are highlighted as well.


Assuntos
Engenharia Metabólica , Pichia , Engenharia Metabólica/métodos , Pichia/genética , Pichia/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales
12.
BMC Microbiol ; 21(1): 120, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879049

RESUMO

BACKGROUND: Translation is an important point of regulation in protein synthesis. However, there is a limited number of methods available to measure global translation activity in yeast. Recently, O-propargyl-puromycin (OPP) labelling has been established for mammalian cells, but unmodified yeasts are unsusceptible to puromycin. RESULTS: We could increase susceptibility by using a Komagataella phaffii strain with an impaired ergosterol pathway (erg6Δ), but translation measurements are restricted to this strain background, which displayed growth deficits. Using surfactants, specifically Imipramine, instead, proved to be more advantageous and circumvents previous restrictions. Imipramine-supplemented OPP-labelling with subsequent flow cytometry analysis, enabled us to distinguish actively translating cells from negative controls, and to clearly quantify differences in translation activities in different strains and growth conditions. Specifically, we investigated K. phaffii at different growth rates, verified that methanol feeding alters translation activity, and analysed global translation in strains with genetically modified stress response pathways. CONCLUSIONS: We set up a simple protocol to measure global translation activity in yeast on a single cell basis. The use of surfactants poses a practical and non-invasive alternative to the commonly used ergosterol pathway impaired strains and thus impacts a wide range of applications where increased drug and dye uptake is needed.


Assuntos
Imipramina/farmacologia , Puromicina/análogos & derivados , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Biossíntese de Proteínas , Puromicina/química , Puromicina/metabolismo , Saccharomycetales/metabolismo , Tensoativos/farmacologia
13.
Curr Genet ; 67(4): 641-661, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33725138

RESUMO

The transcription factors Cat8 and Sip4 were described in Saccharomyces cerevisiae and Kluyveromyces lactis to have very similar DNA binding domains and to be necessary for derepression of a variety of genes under non-fermentative growth conditions via binding to the carbon source responsive elements (CSREs). The methylotrophic yeast Komagataella phaffii (syn Pichia pastoris) has two transcription factors (TFs), which are putative homologs of Cat8 based on sequence similarity, termed Cat8-1 and Cat8-2. It is yet unclear in which cellular processes they are involved and if one of them is actually the homolog of Sip4. To study the roles of the Cat8 homologs in K. phaffii, overexpression or deletion strains were generated for the two TFs. The ability of these mutant strains to grow on different carbon sources was tested, and transcript levels of selected genes from the carbon metabolism were quantified. Our experiments showed that the TFs are required for the growth of K. phaffii on C2 carbon sources, but not on glucose, glycerol or methanol. K. phaffii deleted for Cat8-1 showed impaired growth on acetate, while both Cat8-1 and Cat8-2 are involved in the growth of K. phaffii on ethanol. Correspondingly, both TFs are participating in the activation of ADH2, ALD4 and ACS1, three genes encoding enzymes important for the assimilation of ethanol. Different from S. cerevisiae and K. lactis, Cat8-1 is not regulating the transcription of the putative Sip4-family member Cat8-2 in K. phaffii. Furthermore, Cat8-1 is necessary for the activation of genes from the glyoxylate cycle, whereas Cat8-2 is necessary for the activation of genes from the carnitine shuttle. Neither Cat8-1 nor Cat8-2 are required for the activation of gluconeogenesis genes. Finally, the CAT8-2 gene is repressed by the Mig1-2 transcription factor on glucose and autorepressed by the Cat8-2 protein on all tested carbon sources. Our study identified the involvement of K. phaffii Cat8-1 and Cat8-2 in C2-metabolism, and highlighted similarities and differences to their homologs in other yeast species.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/genética , Álcool Desidrogenase/genética , Aldeído Desidrogenase/genética , Coenzima A Ligases/genética , Etanol/metabolismo , Regulação Fúngica da Expressão Gênica , Gluconeogênese/genética , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Saccharomyces cerevisiae , Saccharomycetales/genética
14.
FEMS Yeast Res ; 21(2)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33599728

RESUMO

Methylotrophic yeasts are considered to use alcohol oxidases to assimilate methanol, different to bacteria which employ alcohol dehydrogenases with better energy conservation. The yeast Komagataella phaffii carries two genes coding for alcohol oxidase, AOX1 and AOX2. The deletion of the AOX1 leads to the MutS phenotype and the deletion of AOX1 and AOX2 to the Mut- phenotype. The Mut- phenotype is commonly regarded as unable to utilize methanol. In contrast to the literature, we found that the Mut- strain can consume methanol. This ability was based on the promiscuous activity of alcohol dehydrogenase Adh2, an enzyme ubiquitously found in yeast and normally responsible for ethanol consumption and production. Using 13C labeled methanol as substrate we could show that to the largest part methanol is dissimilated to CO2 and a small part is incorporated into metabolites, the biomass, and the secreted recombinant protein. Overexpression of the ADH2 gene in K. phaffii Mut- increased both the specific methanol uptake rate and recombinant protein production, even though the strain was still unable to grow. These findings imply that thermodynamic and kinetic constraints of the dehydrogenase reaction facilitated the evolution towards alcohol oxidase-based methanol metabolism in yeast.


Assuntos
Álcool Desidrogenase/metabolismo , Oxirredutases do Álcool/metabolismo , Regulação Fúngica da Expressão Gênica , Metanol/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Álcool Desidrogenase/análise , Álcool Desidrogenase/genética , Proteínas Fúngicas/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes , Saccharomycetales/enzimologia
15.
Biotechnol J ; 16(3): e2000266, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32975831

RESUMO

The methylotrophic yeast Pichia pastoris is known as an efficient host for the production of heterologous proteins. While N-linked protein glycosylation is well characterized in P. pastoris there is less knowledge of the patterns of O-glycosylation. O-glycans produced by P. pastoris consist of short linear mannose chains, which in the case of recombinant biopharmaceuticals can trigger an immune response in humans. This study aims to reveal the influence of different cultivation strategies on O-mannosylation profiles in P. pastoris. Sixteen different model proteins, produced by different P. pastoris strains, are analyzed for their O-glycosylation profile. Based on the obtained data, human serum albumin (HSA) is chosen to be produced in fast and slow growth fed batch fermentations by using common promoters, PGAP and PAOX1 . After purification and protein digestion, glycopeptides are analyzed by LC/ESI-MS. In the samples expressed with PGAP it is found that the degree of glycosylation is slightly higher when a slow growth rate is used, regardless of the efficiency of the producing strain. The highest glycosylation intensity is observed in HSA produced with PAOX1 . The results indicate that the O-glycosylation level is markedly higher when the protein is produced in a methanol-based expression system.


Assuntos
Pichia , Fermentação , Glicosilação , Humanos , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales
16.
FEMS Yeast Res ; 20(5)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32766781

RESUMO

Many yeasts differentiate into multicellular phenotypes in adverse environmental conditions. Here, we investigate pseudohyphal growth in Komagataella phaffii and the involvement of the flocculin (FLO) gene family in its regulation. The K. phaffii FLO family consists of 13 members, and the conditions inducing pseudohyphal growth are different from Saccharomyces cerevisiae. So far, this phenotype was only observed when K. phaffii was cultivated at slow growth rates in glucose-limited chemostats, but not upon nitrogen starvation or the presence of fusel alcohols. Transcriptional analysis identified that FLO11, FLO400 and FLO5-1 are involved in the phenotype, all being controlled by the transcriptional regulator Flo8. The three genes exhibit a complex mechanism of expression and repression during transition from yeast to pseudohyphal form. Unlike in S. cerevisiae, deletion of FLO11 does not completely prevent the phenotype. In contrast, deletion of FLO400 or FLO5-1 prevents pseudohyphae formation, and hampers FLO11 expression. FAIRE-Seq data shows that the expression and repression of FLO400 and FLO5-1 are correlated to open or closed chromatin regions upstream of these genes, respectively. Our findings indicate that K. phaffii Flo400 and/or Flo5-1 act as upstream signals that lead to the induction of FLO11 upon glucose limitation in chemostats at slow growth and chromatin modulation is involved in the regulation of their expression.


Assuntos
Proteínas Fúngicas/genética , Glicoproteínas de Membrana/genética , Família Multigênica , Saccharomycetales/genética , Regulação Fúngica da Expressão Gênica , Hifas , Fenótipo
17.
Microbiology (Reading) ; 166(7): 614-616, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32720891

RESUMO

Methylotrophic yeasts of the genus Komagataella are abundantly found in tree exudates. Their ability to utilize methanol as carbon and energy source relies on an assimilation pathway localized in largely expanded peroxisomes, and a cytosolic methanol dissimilation pathway. Other substrates like glucose or glycerol are readily utilized as well. Komagataella yeasts usually grow as haploid cells and are secondary homothallic as they can switch mating type. Upon mating diploid cells sporulate readily, forming asci with four haploid spores. Their ability to secrete high amounts of heterologous proteins made them interesting for biotechnology, which expands today also to other products of primary and secondary metabolism.


Assuntos
Metanol/metabolismo , Saccharomycetales/classificação , Saccharomycetales/fisiologia , Biotecnologia , Proteínas Fúngicas/metabolismo , Filogenia , Proteínas Recombinantes/metabolismo
18.
FEMS Yeast Res ; 20(3)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374383

RESUMO

Yeast mating pheromones are small secreted peptides required for efficient mating between cells of opposite mating type. Pheromone gradients allow the cells to detect potential mating partners. Secreted pheromone degrading proteases steepen local gradients and allow fast recovery from the pheromone signal. The methylotrophic yeast Komagataella phaffii is a preferentially haploid species. Only under nitrogen starvation, mating genes are activated and the cells are able to undergo a full sexual cycle of mating and sporulation. It has been shown that, similar to other yeasts, K. phaffii requires the mating pheromone and pheromone surface receptor genes for efficient mating. The analysis of so far uncharacterized mating-type-specific genes allowed us to identify the K. phaffii α-factor protease gene YPS1-5. It encodes an aspartic protease of the yapsin family and is upregulated only in a-type cells under mating conditions. The phenotype of K. phaffiia-type strains with a deletion in the protease gene was found to be highly similar to the phenotype of Saccharomyces cerevisiae α-factor protease BAR1 deletion strains. They are highly sensitive to α-factor pheromone in pheromone sensitivity assays and were found to mate with reduced efficiency. Based on our results, we propose to rename the gene into K. phaffii BAR1.


Assuntos
Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Fator de Acasalamento/genética , Feromônios/metabolismo , Saccharomycetales/enzimologia , Saccharomycetales/genética , Mutação , Fenótipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
Adv Biosyst ; 4(4): e1900172, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32293158

RESUMO

Engineered promoters are key components in the cell-factory design, allowing precise and enhanced expression of genes. Promoters having exceptional strength are attractive candidates for designing metabolic engineering strategies for tailoring de novo production strategies that require directed evolution methods by engineering with de novo synthetic biology tools. Here, the custom-designed AOX1 hybrid-promoter architectures in coordination with targeted transcription factors are shown, transcriptionally rewired the expression over methanol-free substrate-utilization pathway(s) and converted methanol-dependent Pichia pastoris alcohol oxidase 1(AOX1) promoter (PAOX1 ) expression into a non-toxic carbon-source-regulated system. AOX1 promoter variants are engineered by replacing specified cis-regulatory DNA elements with synthetic Adr1, Cat8, and Aca2 cis-acting DNA elements for Mxr1, Cat8, and Aca1 binding, respectively. Applications of the engineered-promoters are validated for eGFP expression and extracellular human serum albumin production. The hybrid-promoter architecture designed with single Cat8 cis-acting DNA element deregulates the expression on ethanol. Compared with PAOX1 on methanol, the expression on ethanol is increased with i) PAOX1/Cat8-L3 (designed with single Cat8 cis-acting element) to 74%, ii) PAOX1/Adr1-L3/Cat8-L3 (designed with single- Cat8 and Adr1 cis-acting elements) to 85%, and for further consolidation of deregulated expression iii) PeAOX1 (designed with triplet- Cat8 and Adr1 cis-acting elements) 1.30-fold, at t = 20 h of batch cultivations.


Assuntos
Oxirredutases do Álcool/genética , Regulação para Baixo , Proteínas Fúngicas/genética , Expressão Gênica , Elementos de Resposta , Saccharomycetales , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo
20.
Biotechnol Bioeng ; 117(5): 1394-1405, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32034758

RESUMO

The methanol utilization (Mut) phenotype in the yeast Pichia pastoris (syn. Komagataella spp.) is defined by the deletion of the genes AOX1 and AOX2. The Mut- phenotype cannot grow on methanol as a single carbon source. We assessed the Mut- phenotype for secreted recombinant protein production. The methanol inducible AOX1 promoter (PAOX1 ) was active in the Mut- phenotype and showed adequate eGFP fluorescence levels and protein yields (YP/X ) in small-scale screenings. Different bioreactor cultivation scenarios with methanol excess concentrations were tested using PAOX1 HSA and PAOX1 vHH expression constructs. Scenario B comprising a glucose-methanol phase and a 72-hr-long methanol only phase was the best performing, producing 531 mg/L HSA and 1631 mg/L vHH. 61% of the HSA was produced in the methanol only phase where no biomass growth was observed, representing a special case of growth independent production. By using the Mut- phenotype, the oxygen demand, heat output, and specific methanol uptake (qmethanol ) in the methanol phase were reduced by more than 80% compared with the MutS phenotype. The highlighted improved process parameters coupled with growth independent protein production are overlooked benefits of the Mut- strain for current and future applications in the field of recombinant protein production.


Assuntos
Engenharia Metabólica/métodos , Metanol/metabolismo , Saccharomycetales , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Reatores Biológicos/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...